Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
1.
J Enzyme Inhib Med Chem ; 38(1): 2198163, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37036011

RESUMO

Novel series of aminopyrimidines bearing a biologically active cyclohexenone 3a-f and oxo-selaneylidene moiety 4, besides selenadiazolopyrimidines (5a-e and 7), were synthesised using 5,6-diaminouracils as starting materials. Compound 3a exhibited strong anti-proliferative activity against three cell lines: HepG-2 (IC50 14.31 ± 0.83 µM), A-549 (IC50 30.74 ± 0.76 µM), and MCF-7 (IC50 27.14 ± 1.91 µM). Also, it was four times more selectively cytotoxic against WI-38 cell lines than doxorubicin. Furthermore, Topoisomerase II (IC50 4.48 ± 0.65 µM) and HSP90 (IC50 1.78 ± 0.11 µM) were both strongly inhibited in vitro by 3a. The cell cycle was halted at the G1-S phase, and total apoptotic cells were 65 times more than control Hep-G2 cells. Besides, it increased caspase-3 gene expression, triggering mitochondrial cell death. Molecular docking study indicated that it could bind to Topoisomerase II and HSP90 binding sites in an inhibitory mode. Its geometric properties were investigated using the density functional theory (DFT). Furthermore, compound 3a demonstrated in silico good oral bioavailability.


Assuntos
Antineoplásicos , Proteínas de Choque Térmico HSP90 , Pirimidinas , Inibidores da Topoisomerase II , Pirimidinas/síntese química , Pirimidinas/farmacologia , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Células Hep G2 , Células A549 , Células MCF-7 , Humanos , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Simulação por Computador , Antineoplásicos/síntese química , Antineoplásicos/farmacologia
2.
Bioorg Med Chem Lett ; 60: 128606, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123005

RESUMO

A new series of fifty-four 2-phenol-4-aryl-6-hydroxyphenylpyridines containing fluorophenyl, trifluoromethylphenyl, and trifluoromethoxy phenyl groups were synthesized and tested for topoisomerase IIα inhibitory and antiproliferative activity against different cancer cell lines in an attempt to look into topoisomerase IIα-targeted prospective anticancer agents to counter the limitations of available treatment options. When compared to positive controls, several compounds 11-12, 37, 50, and 51 showed high antiproliferative activity, while several 4-fluorophenyl substituted compounds 13-14 and 18 showed strong topoisomerase IIα inhibition. Surprisingly, most of the compounds had a significant antiproliferative effect on the HCT15 colorectal adenocarcinoma and T47D breast cancer cell lines. Moreover, compound 12 with para-fluorophenyl at the 4-position and meta-phenolic groups at the 2- and 6-positions inhibited proliferating HeLa cervix adenocarcinoma cells with an IC50 value of 1.28 µM. Based on biological results, the structure-activity relationships of the synthesized derivatives emphasized the significance of 4-trifluoromethoxyphenyl groups for strong antiproliferative activity and 4-fluorophenyl groups for strong topo IIα inhibition. Furthermore, meta- and para-phenolic groups at the 2- and 4-positions are favorable for strong topo IIα inhibitory and antiproliferative activity. The research findings provide insight into the effect of different fluorine functionalities in the discovery of novel topoisomerase IIα-targeted anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidroxilação , Estrutura Molecular , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
3.
J Enzyme Inhib Med Chem ; 37(1): 502-513, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35012398

RESUMO

Topoisomerase (IIB) inhibitors have been involved in the therapies of tumour progression and have become a major focus for the development of anticancer agents. New three-component hybridised ligands, 1,4-disubstituted-1,2,3-triazoles (8-17), were synthesised via a 1,3-dipolar cycloaddition reaction of 9-azidoacridine/3-azidocoumarin with N/O-propargyl small molecules under click reaction conditions. Cancer cell growth inhibition of the synthesised triazoles was tested against human cell-lines in the NCI-60-cell-panel, and the most active compounds tested against topoisomerase (IIB)-enzymes. The acridinyl ligands (8-10) revealed 60-97% cell growth inhibition in six cancer cell-panels. Cell-cycle analysis of MCF7 and DU-145 cells treated with the active acridinyl ligands exhibited cell-cycle arrest at G2/M phase and proapoptotic activity. In addition, compound 8 displayed greater inhibitory activity against topoisomerase (IIB) (IC50 0.52 µM) compared with doxorubicin (IC50 0.83 µM). Molecular dynamics simulation studies showed the acridine-triazole-pyrimidine hybrid pharmacophore was optimal with respect to protein-ligand interaction and fit within the binding site, with optimal orientation to allow for intercalation with the DNA bases (DG13, DC14, and DT9).


Assuntos
Acridinas/farmacologia , Antineoplásicos/farmacologia , Cumarínicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Inibidores da Topoisomerase II/farmacologia , Triazóis/farmacologia , Acridinas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/química , Relação Dose-Resposta a Droga , Doxorrubicina/química , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Triazóis/química
4.
Bioorg Med Chem Lett ; 57: 128499, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906671

RESUMO

There is an emerging global need for new and more effective antibiotics against multi-resistant bacteria. This situation has led to massive industrial investigations on novel bacterial topoisomerase inhibitors (NBTIs) that target the vital bacterial enzymes DNA gyrase and topoisomerase IV. However, several of the NBTI compound classes have been associated with inhibition of the hERG potassium channel, an undesired cause of cardiac arrhythmia, which challenges medicinal chemistry efforts through lengthy synthetic routes. We herein present a solid-phase strategy that rapidly facilitates the chemical synthesis of a promising new class of NBTIs. A proof-of-concept library was synthesized with the ability to modulate both hERG affinity and antibacterial activity through scaffold substitutions.


Assuntos
Antibacterianos/farmacologia , Piperazinas/farmacologia , Quinolinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/síntese química , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piperazinas/síntese química , Estudo de Prova de Conceito , Quinolinas/síntese química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Técnicas de Síntese em Fase Sólida , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Regulador Transcricional ERG/metabolismo
5.
J Enzyme Inhib Med Chem ; 37(1): 299-314, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894955

RESUMO

This research presents the design and synthesis of a novel series of phthalazine derivatives as Topo II inhibitors, DNA intercalators, and cytotoxic agents. In vitro testing of the new compounds against HepG-2, MCF-7, and HCT-116 cell lines confirmed their potent cytotoxic activity with low IC50 values. Topo II inhibition and DNA intercalating activities were evaluated for the most cytotoxic members. IC50 values determination demonstrated Topo II inhibitory activities and DNA intercalating affinities of the tested compounds at a micromolar level. Amongst, compound 9d was the most potent member. It inhibited Topo II enzyme at IC50 value of 7.02 ± 0.54 µM with DNA intercalating IC50 of 26.19 ± 1.14 µM. Compound 9d was then subjected to an in vivo antitumor examination. It inhibited tumour proliferation reducing solid tumour volume and mass. Additionally, it restored liver enzymes, proteins, and CBC parameters near-normal, indicating a remarkable amelioration in their functions along with histopathological examinations.


Assuntos
Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , DNA/química , Desenho de Fármacos , Simulação de Acoplamento Molecular , Ftalazinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ftalazinas/síntese química , Ftalazinas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Células Tumorais Cultivadas
6.
Arch Pharm (Weinheim) ; 355(1): e2100266, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34747519

RESUMO

A series of 3-[(1H-pyrazol-3-yl)imino]indolin-2-one derivatives were designed using the molecular hybridization method, characterized using different spectroscopic techniques, and evaluated for their in vitro antimicrobial activity. Most of the target compounds demonstrated good to moderate antimicrobial activity compared with ciprofloxacin and fluconazole. Four compounds (8b, 9a, 9c, and 10a) showed encouraging results, with minimal inhibitory concentration (MIC) values (53.45-258.32 µM) comparable to those of norfloxacin (100.31-200.63 µM) and ciprofloxacin (48.33-96.68 µM). Noticeably, the four derivatives revealed excellent bactericidal and fungicidal activities, except for the bacteriostatic potential of compounds 8b and 9a against Escherichia coli and Staphylococcus aureus, respectively. The time-killing kinetic study against S. aureus confirmed the efficacy of these derivatives. Furthermore, two of the four promising derivatives, 9a and 10a, could prevent the formation of biofilms of S. aureus without affecting the bacterial growth at low concentrations. A combination study with seven commercial antibiotics against the multidrug-resistant bacterium P. aeruginosa showed a notable reduction in the antibiotic MIC values, represented mainly through a synergistic or additive effect. The enzymatic assay implied that the most active derivatives had inhibition potency against DNA gyrase comparable to that of ciprofloxacin. Molecular docking and density functional theory calculations were performed to explore the binding mode and study the reactivity of the promising compounds.


Assuntos
Anti-Infecciosos/farmacologia , Indóis/farmacologia , Pirazóis/farmacologia , Inibidores da Topoisomerase II/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Ciprofloxacina/farmacologia , DNA Girase/efeitos dos fármacos , DNA Girase/metabolismo , Indóis/síntese química , Indóis/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Simulação de Acoplamento Molecular , Norfloxacino/farmacologia , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
7.
Bioorg Chem ; 119: 105543, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929515

RESUMO

Previously, an array of N-substituted acridone derivatives have been reported as potent topoisomerase II (topo II) inhibitors, and preliminary structure-activity relationship (SAR) outcomes revealed that the linker between 1-NH and N-methyl piperazine motif of the tricyclic acridone scaffold significantly affected their anti-proliferative potencies. To further explore the SARs of acridone-derived topo II inhibitors, a wider range of novel acridone derivatives were herein synthesized via two rounds of structural optimizations on two validated hits, E17 and E24. Initially, the linker length was optimized, and then influences of N-methyl piperazinyl moiety and disposition of three N atoms on the bioactivity were investigated. As a result, a newly developed topo II inhibitor 6 h was found to be more potent than E17 and E24, thereby serving as a tool compound for the follow-up mechanistic study. Compound 6 h functioned as a strong topo IIα/ß inhibitor, caused obvious DNA damage, and induced apoptosis by triggering the loss of mitochondrial membrane potential (Δψm). Further molecular docking and MD study illustrated the favorable interactions of 6 h with both topo IIα and topo IIß subtypes.


Assuntos
Acridonas/farmacologia , Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Inibidores da Topoisomerase II/farmacologia , Acridonas/síntese química , Acridonas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Células Tumorais Cultivadas
8.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885701

RESUMO

2-azido-1H-benzo[d]imidazole derivatives 1a,b were reacted with a ß-ketoester such as acetylacetone in the presence of sodium ethoxide to obtain the desired molecules 2a,b. The latter acted as a key molecule for the synthesis of new carbazone derivatives 4a,b that were submitted to react with 2-oxo-N-phenyl-2-(phenylamino)acetohydrazonoyl chloride to obtain the target thiadiazole derivatives 6a,b. The structures of the newly synthesized compounds were inferred from correct spectral and microanalytical data. Moreover, the newly prepared compounds were subjected to molecular docking studies with DNA gyrase B and exhibited binding energy that extended from -9.8 to -6.4 kcal/mol, which confirmed their excellent potency. The compounds 6a,b were found to be with the minimum binding energy (-9.7 and -9.8 kcal/mol) as compared to the standard drug ciprofloxacin (-7.4 kcal/mol) against the target enzyme DNA gyrase B. In addition, the newly synthesized compounds were also examined and screened for their in vitro antimicrobial activity against pathogenic microorganisms Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, Aspergillus niger, and Candida albicans. Among the newly synthesized molecules, significant antimicrobial activity against all the tested microorganisms was obtained for the compounds 6a,b. The in silico and in vitro findings showed that compounds 6a,b were the most active against bacterial strains, and could serve as potential antimicrobial agents.


Assuntos
Anti-Infecciosos/química , Infecções Bacterianas/tratamento farmacológico , DNA Girase/genética , Inibidores da Topoisomerase II/química , Triazóis/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Aspergillus niger/efeitos dos fármacos , Infecções Bacterianas/microbiologia , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , DNA Girase/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Humanos , Simulação de Acoplamento Molecular , Farmacocinética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/farmacologia , Triazóis/síntese química , Triazóis/farmacologia
9.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948269

RESUMO

In this study, we utilized human DNA topoisomerase IIα as a model target to outline a dynophore-based approach to catalytic inhibitor design. Based on MD simulations of a known catalytic inhibitor and the native ATP ligand analog, AMP-PNP, we derived a joint dynophore model that supplements the static structure-based-pharmacophore information with a dynamic component. Subsequently, derived pharmacophore models were employed in a virtual screening campaign of a library of natural compounds. Experimental evaluation identified flavonoid compounds with promising topoisomerase IIα catalytic inhibition and binding studies confirmed interaction with the ATPase domain. We constructed a binding model through docking and extensively investigated it with molecular dynamics MD simulations, essential dynamics, and MM-GBSA free energy calculations, thus reconnecting the new results to the initial dynophore-based screening model. We not only demonstrate a new design strategy that incorporates a dynamic component of molecular recognition, but also highlight new derivates in the established flavonoid class of topoisomerase II inhibitors.


Assuntos
Desenho de Fármacos/métodos , Inibidores da Topoisomerase II/farmacologia , Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Domínio Catalítico/fisiologia , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/metabolismo
10.
Eur J Med Chem ; 226: 113860, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34597897

RESUMO

Several anticancer agents have been developed and innovative approaches have been made toward cancer type-specific medicines for cancer treatment. As a continuous effort to develop potential chemotherapeutic agents, a novel series of 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amines containing amino groups, hydroxyphenyl and fluorine functionalities were designed and synthesized. The compounds were evaluated for topo IIα inhibitory and cytotoxicity against HCT15, and HeLa human cancer cell lines. Among synthesized thirty compounds, the majority exhibited strong topo IIα inhibition and anti-proliferation against HCT15 colorectal adenocarcinoma cell line. The structure-activity relationship study revealed that compounds with -CF3 and -OCF3 substituents at 4- position and 3' or 4'-hydroxyphenyl at 2-position attached to the central pyridine ring displayed potent topo IIα and anti-proliferative activity in colorectal and cervix cancer cell line. In vitro studies provided the evidence that compounds 16, 19, 22, and 28 possess excellent topo IIα inhibition and antiproliferative activity. For a better understanding, topo IIα cleavage complex, EtBr displacement, KI quenching assays and molecular docking of compound 19 was performed and the results revealed the mode of action as a DNA intercalative topo IIα poison inhibitor. The results obtained from this study provide insight into the DNA binding mechanism of 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amines and alteration in topo IIα inhibitory and antiproliferative activity with modifications in the rigid structure.


Assuntos
Aminas/farmacologia , Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Descoberta de Drogas , Inibidores da Topoisomerase II/farmacologia , Aminas/síntese química , Aminas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Células Tumorais Cultivadas
11.
Bioorg Chem ; 116: 105349, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536927

RESUMO

A series of fluorinated and hydroxylated 2,4-diphenyl indenopyridinols were designed and synthesized using l-proline-catalyzed and microwave-assisted synthetic methods for the development of new anticancer agents. Adriamycin and etoposide were used as reference compounds for the evaluation of topo IIα inhibitory and anti-proliferative activity of the synthesized compounds. Exploring the structure-activity relationships of 36 prepared compounds and biological results, most of the compounds with ortho- and para-fluorophenyl at 4-position of indenopyridinol ring displayed strong topo IIα inhibition. In addition, the majority of the ortho- and meta-fluorophenyl substituted compounds 1-24 displayed strong anti-proliferative activity against DU145 prostate cancer cell line compared to the positive controls. Interestingly, compound 4 possessing ortho-phenolic and ortho-fluorophenyl group at 2- and 4-position, respectively of the central pyridine ring showed high anti-proliferative activity (IC50 = 0.82 µM) against T47D human breast cancer cell line, while para-phenolic and para-fluorophenyl substituted compound 36 exhibited potent topo IIα inhibitory activity with 94.7% and 88.6% inhibition at 100 µM and 20 µM concentration, respectively. A systematic comparison between the results of this study and the previous study indicated that minor changes in the position of functional groups in the structure affect the topo IIα inhibitory activity and anti-proliferative activity of the compounds. The findings from this study will provide valuable information to the researchers working on the medicinal chemistry of topoisomerase IIα-targeted anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Indenos/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Piridinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indenos/síntese química , Indenos/química , Estrutura Molecular , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
12.
Bioorg Med Chem Lett ; 49: 128274, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34303812

RESUMO

Two series of (hetero)arylamino-naphthoquinones and benzo-fused carbazolequinones were considered for study with the rationale that related structural motifs are present in numerous drugs, clinical trial agents, natural products and hTopoIIα inhibitors. Total 42 compounds were synthesized by reactions including dehydrogenative CN and Pd-catalyzed CC bond forming transformations. These compounds were screened against numerous cancer cells including highly metastatic one (MCF-7, MDA-MB-231, H-357 and HEK293T), and normal cells (MCF 10A). Some of the active compounds were evaluated for clonogenic cell survival and apoptotic effects in cancer cells (DAPI nuclear staining, Comet assay, Annexin-V-FITC/PI dual staining, flow cytometry, and western blot analysis with relevant proteins). All compounds were tested for hTopoIIα inhibitory activity. The investigated series compounds showed important properties like significant apoptotic antiproliferation in cancer cells with cell cycle arrest at S-phase and downregulation of NF- κß signaling cascade, relatively less cytotoxicity to normal cells, and hTopoIIα inhibition with more efficiency compared to an anticancer drug etoposide.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carbazóis/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Naftoquinonas/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Carbazóis/síntese química , Carbazóis/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Naftoquinonas/síntese química , Naftoquinonas/toxicidade , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/toxicidade
13.
Bioorg Chem ; 114: 105097, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34171594

RESUMO

Novel mansonone F derivative MSN54 (9-bromo-2,3-diethylbenzo[de]chromene-7,8-dione) exhibited significant cytotoxicity against twelve human tumor cell lines in vitro, with particularly strong potency against HL-60/MX2 cell line resistant to Topo II poisons. MSN54 was found to have IC50 of 0.69 and 1.43 µM against HL-60 and HL-60/MX2 cells, respectively. The resistance index is 10 times lower than that of the positive control VP-16 (etoposide). Various biological assays confirmed that MSN54 acted as a Topo IIα specific non-intercalative catalytic inhibitor. Furthermore, MSN54 exhibited good antitumor efficacy and low toxicity at a dose of 5 mg/kg in A549 tumor xenograft models. Thus, compound MSN54 is a promising candidate for the development of novel antitumor agents.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
14.
Bioorg Chem ; 114: 105042, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34120024

RESUMO

S. aureus resistant to methicillin (MRSA) is one of the most-concerned multidrug resistant bacteria, due to its role in life-threatening infections. There is an urgent need to develop new antibiotics against MRSA. In this study, we firstly compiled a data set of 2,3-diaminoquinoxalines by chemical synthesis and antibacterial screening against S. aureus, and then performed cheminformatics modeling and virtual screening. The compound with the Specs ID of AG-205/33156020 was discovered as a new antibacterial agent, and was further identified as a Gyrase B (GyrB) inhibitor. In light of the common features, we hypothesized that the 6c as the representative of 2,3-diaminoquinoxalines also inhibited GyrB and eventually proved it. Via molecular docking and molecular dynamics simulations, we identified binding modes of AG-205/33156020 and 6c to the ATPase domain of GyrB. Importantly, these GyrB inhibitors inhibited the MRSA strains and showed selectivity to HepG2 and HUVEC. Taken together, this research work provides an effective ligand-based computational workflow for scaffold hopping in anti-MRSA drug discovery, and discovers two new GyrB inhibitors that are worthy of further development.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Quinoxalinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/metabolismo , Antibacterianos/toxicidade , DNA Girase/metabolismo , Avaliação Pré-Clínica de Medicamentos , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Ligantes , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Quinoxalinas/síntese química , Quinoxalinas/metabolismo , Quinoxalinas/toxicidade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/metabolismo , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/toxicidade
15.
Bioorg Chem ; 112: 104913, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33945950

RESUMO

Discovery of novel anticancer drugs which have low toxicity and high activity is very significant area in anticancer drug research and development. One of the important targets for cancer treatment research is topoisomerase enzymes. In order to make a contribution to this field, we have designed and synthesized some 5(or 6)-nitro-2-(substitutedphenyl)benzoxazole (1a-1r) and 2-(substitutedphenyl)oxazolo[4,5-b]pyridine (2a-2i) derivatives as novel candidate antitumor agents targeting human DNA topoisomerase enzymes (hTopo I and hTopo IIα). Biological activity results were found very promising for the future due to two compounds, 5-nitro-2-(4-butylphenyl)benzoxazole (1i) and 2-(4-butylphenyl)oxazolo[4,5-b]pyridine (2i), that inhibited hTopo IIα with 2 µM IC50 value. These two compounds were also found to be more active than reference drug etoposide. However, 1i and 2i did not show any satisfactory cyctotoxic activity on the HeLa, WiDR, A549, and MCF7 cancer cell lines. Moreover, molecular docking and molecular dynamic simulations studies for the most active compounds were applied in order to understand the mechanism of inhibition activity of hTopo IIα. In addition, in silico ADME/Tox studies were performed to predict drug-likeness and pharmacokinetic properties of all the tested compounds.


Assuntos
Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Descoberta de Drogas , Oxazóis/farmacologia , Pirimidinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzoxazóis/síntese química , Benzoxazóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Oxazóis/síntese química , Oxazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
16.
Molecules ; 26(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801316

RESUMO

A pharmacophore model for inhibitors of Escherichia coli's DNA Gyrase B was developed, using computer-aided drug design. Subsequently, docking studies showed that 2,5(6)-substituted benzimidazole derivatives are promising molecules, as they possess key hydrogen bond donor/acceptor groups for an efficient interaction with this bacterial target. Furthermore, 5(6)-bromo-2-(2-nitrophenyl)-1H-benzimidazole, selected as a core molecule, was prepared on a multi-gram scale through condensation of 4-bromo-1,2-diaminobenzene with 2-nitrobenzaldehyde using a sustainable approach. The challenging functionalization of the 5(6)-position was carried out via palladium-catalyzed Suzuki-Miyaura and Buchwald-Hartwig amination cross-coupling reactions between N-protected-5-bromo-2-nitrophenyl-benzimidazole and aryl boronic acids or sulfonylanilines, with yields up to 81%. The final designed molecules (2-(aminophen-2-yl)-5(6)-substituted-1H-benzimidazoles), which encompass the appropriate functional groups in the 5(6)-position according to the pharmacophore model, were obtained in yields up to 91% after acid-mediated N-boc deprotection followed by Pd-catalyzed hydrogenation. These groups are predicted to favor interactions with DNA gyrase B residues Asn46, Asp73, and Asp173, aiming to promote an inhibitory effect.


Assuntos
Benzimidazóis/química , DNA Girase/química , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Paládio/química , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/farmacologia , Escherichia coli/enzimologia , Proteínas de Escherichia coli/antagonistas & inibidores
17.
Bioorg Chem ; 111: 104884, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33872925

RESUMO

The objective of this study was to discover potential topoisomerase (topo) targeting anticancer agents. Novel series of hydroxylated and halogenated(-F, -Cl, and -CF3) 2,4-diaryl benzofuro[3,2-b]pyridin-7-ols were systematically designed and synthesized by faster, economic, and environmentally friendly l-proline catalyzed and microwave-assisted one pot reaction method. The synthesized compounds were assessed for topo I and IIα inhibitory and anti-proliferative activities. The in vitroevaluation displayed that most of the compounds have selective topo IIα inhibitoryactivity as well as selectivity towards T47D human cancer cell line. Structure-activity relationship study suggested that the introduction of additional hydroxyl functionality at 7-positon of benzofuro[3,2-b]pyridine skeleton is crucial for selective topo IIα inhibitory activity. Placement of phenolic moiety on the 4-position of the tricyclic system imparts better topo IIα inhibitory and anti-proliferative activity.


Assuntos
Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Piridinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzofuranos/síntese química , Benzofuranos/química , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Halogenação , Humanos , Hidroxilação , Estrutura Molecular , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Células Tumorais Cultivadas
18.
Bioorg Chem ; 112: 104920, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33910078

RESUMO

DNA gyrase and topoisomerase IV (topo IV) inhibitors are among the most interesting antibacterial drug classes without antibacterial pipeline representative. Twenty-four new quinoline-1,3,4-oxadiazole and quinoline-1,2,4-triazole hybrids were developed and tested against DNA gyrase and topoisomerase IV from Escherichia coli and Staphylococcus aureus. The most potent compounds 4c, 4e, 4f, and 5e displayed an IC50 of 34, 26, 32, and 90 nM against E. coli DNA gyrase, respectively (novobiocin, IC50 = 170 nM). The activities of 4c, 4e, 4f, and 5e on DNA gyrase from S. aureus were weaker than those on E. coli gyrase. Compound 4e showed IC50 values (0.47 µM and 0.92 µM) against E. coli topo IV and S. aureus topo IV, respectively in comparison to novobiocin (IC50 = 11, 27 µM, respectively). Antibacterial activity against Gram-positive and Gram-negative bacterial strains has been studied. Some compounds have demonstrated superior antibacterial activity to ciprofloxacin against some of the bacterial strain studied. The most active compounds in this study showed no cytotoxic effect with cell viability>86%. Finally, a molecular docking analysis was performed to investigate the binding mode and interactions of the most active compounds to the active site of DNA gyrase and topoisomerase IV (topo IV) enzymes.


Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Oxidiazóis/farmacologia , Quinolinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Triazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxidiazóis/química , Quinolinas/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Triazóis/química
19.
Bioorg Chem ; 111: 104885, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33838559

RESUMO

New antibacterial drugs are urgently needed to tackle the rapid rise in multi-drug resistant bacteria. DNA gyrase is a validated target for the development of new antibacterial drugs. Thus, in the present investigation, a novel series of 1,2,4-oxadiazole-chalcone/oxime (6a-f) and (7a-f) were synthesized and characterized by IR, NMR (1H and 13C) and elemental analyses. The title compounds were evaluated for their in-vitro antimicrobial activity by the modified agar diffusion method as well as their E. coli DNA gyrase inhibitory activity. The minimum inhibitory concentration (MIC) and the structure activity relationships (SARs) were evaluated. Among all, compounds 6a, 6c-e, 7b and 7e were the most potent and proved to possess broad spectrum activity against the tested Gram-positive and Gram-negative organisms. Additionally, compounds 6a (against S. aureus), 6c (against B. subtilis and E. hirae), 6e (against E. hirae), 6f, 7a and 7c (against E. coli) and 7d (against B. subtilis), with MIC value of 3.12 µM were two-fold more potent than the standard ciprofloxacin (MIC = 6.25 µM). Mechanistically, compounds 6c, 7c, 7e and 7b had good inhibitory activity against E. coli gyrase with IC50 values of 17.05, 13.4, 16.9, and 19.6 µM, respectively, in comparison with novobiocin (IC50 = 12.3 µM) and ciprofloxacin (IC50 = 10.5 µM). The molecular docking results at DNA gyrase active site revealed that the most potent compounds 6c and 7c have binding mode and docking scores comparable to that of ciprofloxacin and novobiocin suggesting their antibacterial activity via inhibition of DNA gyrase. Finally, the predicted parameters of Lipinski's rule of five and ADMET analysis showed that 6c and 7c had good drug-likeness and acceptable physicochemical properties. Therefore, the hybridization of the chalcone and oxadiazole moieties could be promising lead as antibacterial candidate which merit further future structural optimizations.


Assuntos
Antibacterianos/farmacologia , DNA Girase/metabolismo , Desenho de Fármacos , Simulação de Acoplamento Molecular , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Bacillus subtilis/efeitos dos fármacos , Relação Dose-Resposta a Droga , Enterococcus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
20.
J Med Chem ; 64(7): 3997-4019, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33750129

RESUMO

Cardioprotective activity of dexrazoxane (ICRF-187), the only clinically approved drug against anthracycline-induced cardiotoxicity, has traditionally been attributed to its iron-chelating metabolite. However, recent experimental evidence suggested that the inhibition and/or depletion of topoisomerase IIß (TOP2B) by dexrazoxane could be cardioprotective. Hence, we evaluated a series of dexrazoxane analogues and found that their cardioprotective activity strongly correlated with their interaction with TOP2B in cardiomyocytes, but was independent of their iron chelation ability. Very tight structure-activity relationships were demonstrated on stereoisomeric forms of 4,4'-(butane-2,3-diyl)bis(piperazine-2,6-dione). In contrast to its rac-form 12, meso-derivative 11 (ICRF-193) showed a favorable binding mode to topoisomerase II in silico, inhibited and depleted TOP2B in cardiomyocytes more efficiently than dexrazoxane, and showed the highest cardioprotective efficiency. Importantly, the observed ICRF-193 cardioprotection did not interfere with the antiproliferative activity of anthracycline. Hence, this study identifies ICRF-193 as the new lead compound in the development of efficient cardioprotective agents.


Assuntos
Cardiotônicos/uso terapêutico , Cardiotoxicidade/tratamento farmacológico , Piperazinas/uso terapêutico , Inibidores da Topoisomerase II/uso terapêutico , Animais , Animais Recém-Nascidos , Cardiotônicos/síntese química , Cardiotônicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Daunorrubicina/toxicidade , Dicetopiperazinas , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Miócitos Cardíacos/efeitos dos fármacos , Piperazinas/síntese química , Piperazinas/metabolismo , Ligação Proteica , Ratos Wistar , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...